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Abstract (250 words max)

Phylogenetic methods can use the sampling times of molecular sequence data to calibrate 
the molecular clock, enabling the estimation of evolutionary rates and timescales for rapidly 
evolving pathogens and data sets containing ancient DNA samples. A key aspect of such 
calibrations is whether a sufficient amount of molecular evolution has occurred over the 
sampling time window, that is, whether the data can be treated as having come from a 
measurably evolving population. Here we investigate the performance of a fully Bayesian 
evaluation of temporal signal (BETS) in sequence data. The method involves comparing the 
fit to the data of two models: a model in which the data are accompanied by the actual 
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(heterochronous) sampling times, and a model in which the samples are constrained to be 
contemporaneous (isochronous). We conducted simulations under a wide range of 
conditions to demonstrate that BETS accurately classifies data sets according to whether 
they contain temporal signal or not, even when there is substantial among-lineage rate 
variation. We explore the behaviour of this classification in analyses of five empirical data 
sets: modern samples of A/H1N1 influenza virus, the bacterium Bordetella pertussis, 
coronaviruses from mammalian hosts, ancient DNA from Hepatitis B virus and mitochondrial 
genomes of dog species. Our results indicate that BETS is an effective alternative to other 
tests of temporal signal. In particular, this method has the key advantage of allowing a 
coherent assessment of the entire model, including the molecular clock and tree prior which 
are essential aspects of Bayesian phylodynamic analyses.

Key words: Bayesian phylogenetics, ancient DNA, measurably evolving population, marginal 
likelihood, molecular clock, temporal signal.

Introduction

The molecular clock has become a ubiquitous tool for studying evolutionary processes in 
rapidly evolving organisms and in data sets that include ancient DNA. In its simplest form, 
the molecular clock posits that evolutionary change occurs at a predictable rate over time 
(Zuckerkandl and Pauling 1965). The molecular clock can be calibrated to estimate 
divergence times by using sampling time information, the timing of known divergence 
events, or a previous estimate of the evolutionary rate (Hipsley and Müller 2014). For 
example, Korber et al. (2000) used sampling times to calibrate the molecular clock and to 
infer the time of origin of HIV group 1. Their approach consisted of estimating a phylogenetic 
tree and conducting a regression of the distance from the root to each of the tips as a 
function of sequence sampling times. In this method, the slope of the regression is an 
estimate of the evolutionary rate in substitutions per site per unit of time, the intercept with 
the time axis is the age of the root node, and the coefficient of determination (R2) is the 
degree to which the data exhibit clocklike behaviour (Rambaut et al. 2016). Despite the 
practicality of root-to-tip regression, its use as a statistical tool for molecular dating has 
several well-known limitations. In particular, data points are not independent because they 
have shared ancestry (i.e., internal branches are traversed multiple times) and a strict 
clocklike behaviour is assumed by necessity. 

The past few decades have seen a surge in novel molecular clock models that explicitly use 
phylogenetic information. Bayesian methods have gained substantial popularity, largely due 
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to the wide array of complex models that can be implemented and the fact that independent 
information, including calibrations, can be specified via prior distributions (Huelsenbeck et al. 
2001; Nascimento et al. 2017). Of particular importance is the availability of molecular clock 
models that relax the assumption of a strict clock by explicitly modelling rate variation among 
lineages (reviewed by Ho and Duchene (2014) and by Bromham et al. (2018)). 

Regardless of the methodology used to analyse time-stamped sequence data, a sufficient 
amount of molecular evolution must have occurred over the sampling time window to 
warrant the use of sequence sampling times for calibration. In such cases, the population 
can be considered to be ‘measurably evolving’ (Drummond et al. 2003). The degree of 
‘temporal information’ in sequence data is determined by the sequence length, the 
evolutionary rate, the range of available sampling times, and the number of sequences. 
Some viruses evolve at a rate of around 5×10-3 subs/site/year (Duchene et al. 2014), such 
that samples collected over a few weeks can be sufficient to calibrate the molecular clock. In 
more slowly evolving organisms, such as mammals, a sampling window of tens of 
thousands of years might be necessary; this can be achieved by including ancient DNA 
sequences (Drummond et al. 2003; Biek et al. 2015).

Testing for temporal signal is an important step prior to interpreting evolutionary rate 
estimates (Rieux and Balloux 2016). A data set is considered to have temporal signal if it 
can be treated as a measurably evolving population, defined by Drummond et al. (2003) as 
“populations from which molecular sequences can be taken at different points in time, 
among which there are a statistically significant number of genetic differences”. In general, 
the presence of temporal signal also implies that the data set will produce reliable 
divergence time estimates (Murray et al. 2015). A popular method to assess temporal signal 
is the date-randomization test that compares actual evolutionary rate estimates to those 
obtained by repeatedly permuting the sequence sampling times (Ramsden et al. 2009). A 
data set is considered to have strong temporal signal if the rate estimated using the correct 
sampling times does not overlap with those of the permutation replicates (Duchêne et al. 
2015; Murray et al. 2015; Duchene et al. 2018). An implementation of this test is also 
available that performs the permutation during a single Bayesian analysis (Trovão et al. 
2015). The interpretation of the date-randomization test is essentially frequentist in nature, 
which leads to an inconsistent mixture of statistical frameworks when Bayesian phylogenetic 
methods are used. Moreover, the procedure is not applicable in cases with small numbers of 
sampling times, owing to the limited number of possible permutations (Duchêne et al. 2015).

ScholarOne, 375 Greenbrier Drive, Charlottesville, VA, 22901  Support: (434) 964-4100



4

We propose a fully Bayesian model test, which we refer to as BETS (Bayesian Evaluation of 
Temporal Signal), to assess temporal signal based on previous analyses by Baele et al. 
(2012). The approach involves quantifying statistical support for two competing models: a 
model in which the data are accompanied by the actual sampling times (i.e., the data are 
treated as heterochronous) and a model in which the sampling times are contemporaneous 
(i.e., the data are treated as isochronous). Therefore, the sampling times are treated as part 
of the model and the test can be understood as a test of ultrametricity of the phylogenetic 
tree. If incorporating sampling times improves the statistical fit, then their use for clock 
calibration is warranted. The crux of BETS, as with Bayesian model selection, is that it 
requires calculating the marginal likelihood of the model in question. The marginal likelihood 
measures the evidence for a model given the data, and calculating it requires integration of 
its likelihood across all parameter values, weighted by the prior (Kass and Raftery 1995).

Because the marginal likelihood is a measure of model evidence, the ratio of the marginal 
likelihoods of two competing models, known as the Bayes factor, is used to assess support 
for one model relative to the other. In the case of applying BETS, let Mhet represent the 
heterochronous model, Miso the isochronous model, and Y the sequence data, such that 
P(Y|Mhet) and P(Y|Miso) are their respective marginal likelihoods. These models differ in the 
number of parameters. In Miso the evolutionary rates and times are nonidentifiable, so the 
rate is fixed to an arbitrary value; in Mhet the rate is a free parameter. Differences in the 
number of parameters do not need to be taken into account separately, because accurate 
marginal likelihood estimators naturally penalize excessive parameterization. Kass and 
Raftery (1995) provide guidelines for interpreting Bayes factors, where a (log) Bayes factor 
log(P(Y|Mhet)) – log(P(Y|Miso)) of at least 5 indicates ‘very strong’ support for Mhet over Miso, a 
value of 3 indicates ‘strong’ support, and a value of 1 is considered as positive evidence for 
Mhet over Miso.

The importance of model selection in Bayesian phylogenetics has prompted the 
development of various techniques to calculate log marginal likelihoods (reviewed by Baele 
et al. (2014) and by Oaks et al. (2019)). These techniques can be broadly classified into 
prior-based and/or posterior-based estimators and path sampling approaches. Prior- and 
posterior-based estimators, also known as importance sampling, include the widely used 
harmonic mean estimator (Newton and Raftery 1994) and the AICM and BICM (Bayesian 
analogues to the Akaike information criterion and the Bayesian information criterion, 
respectively) (Raftery et al. 2007). These scores are easy to compute because they only 
require samples from the posterior distribution as obtained through Markov chain Monte 
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Carlo (MCMC) integration. However, the harmonic mean estimator has been shown to have 
unacceptably high variance when the prior is diffuse relative to the posterior, and, together 
with the AICM, has shown poor performance in practical settings (Baele et al. 2012, 2013). 
The BICM requires a sample size to be specified for each parameter, which is far from trivial 
for phylogenetic inference and therefore remains unexplored for such applications. 

Path sampling approaches include path sampling (originally introduced in phylogenetics as 
‘thermodynamic integration’) (Lartillot and Philippe 2006), stepping-stone sampling (Xie et al. 
2011), and generalized stepping-stone (GSS) sampling (Fan et al. 2011; Baele et al. 2016). 
These methods depend on drawing samples using MCMC from a range of power posterior 
distributions that represent the path from the posterior to the (working) prior, and therefore 
require additional computation. Another numerical technique that was recently introduced to 
phylogenetics is nested sampling (NS) (Maturana et al. 2019), which approximates the log 
marginal likelihood by simplifying the marginal-likelihood function from a multi-dimensional to 
a one-dimensional integral over the cumulative distribution function of the log marginal 
likelihood (Skilling 2006). Fourment et al. (2020) recently compared the accuracy of a range 
of methods for estimating log marginal likelihoods and found GSS to be the most accurate, 
albeit at increased computational cost. Clearly, the reliability of the log marginal likelihood 
estimator is a key consideration for applying BETS.

We conducted a simulation study to assess the reliability of BETS under a range of 
conditions that are typical for data sets of rapidly evolving organisms and of those that 
include ancient DNA. We also analysed five empirical data sets to showcase the 
performance of the test in practice. Our analyses demonstrate the utility of BETS in 
providing accurate evaluation of temporal signal across a wide range of situations. 

Results

Simulations of Measurably Evolving Populations

In our simulations we considered sequence data from heterochronous and isochronous 
trees. Heterochronous trees represent a situation where there is sufficient temporal signal, 
whereas isochronous trees lack temporal signal altogether. We simulated heterochronous 
phylogenetic trees under a stochastic birth-death process with between 90 and 110 tips (fig. 
1A and 1B). To generate isochronous trees we used similar settings, but we assumed a 
single sampling time (fig. 1C). We then simulated evolutionary rates along the trees 
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according to an uncorrelated relaxed clock with an underlying lognormal distribution with a 
mean of 5×10-3 subs/site/unit time and a standard deviation, σ, of 0.0, 0.1, 0.5, or 1, where σ
=0.0 is equivalent to simulating under a strict clock. We then simulated sequence evolution 
using an HKY+Γ substitution model, with parameter values similar to those estimated for 
influenza virus (Hedge et al. 2013), to generate alignments of 4,000 nucleotides. 

Our main simulation conditions produced data sets in which about 50% of the sites were 
variable. We refer to this simulation scenario as (i) ‘high evolutionary rate and wide sampling 
window’, and we considered three other simulation scenarios that involved (ii) a lower 
evolutionary rate of 10-5 subs/site/unit time, (iii) a narrower sampling window, and (iv) both of 
the previous two conditions. For a subset of conditions, we investigated the effect of phylo-
temporal clustering, a situation in which sequences have been sampled at only a few 
specific time points and form monophyletic groups (fig. 1D). This pattern has been shown to 
be a confounding factor that misleads date-randomization tests of temporal signal and that 
often produces biased evolutionary rate estimates (Duchêne et al. 2015; Murray et al. 2015; 
Tong et al. 2018). 

We analysed the sequence data using a strict clock and an uncorrelated relaxed clock with 
an underlying lognormal distribution (Drummond et al. 2006). We considered three 
configurations for sampling times: birth-death sampling times, which are correct for the 
heterochronous data but not for the isochronous data; identical sampling times, which is 
correct for isochronous data but not for the heterochronous data; and permuted birth-death 
sampling times, which are incorrect for both heterochronous and isochronous data.

We estimated the log marginal likelihoods of these six combinations of sampling times and 
clock models using NS and GSS as implemented in BEAST 2.5 (Bouckaert et al. 2019) and 
BEAST 1.10 (Suchard et al. 2018), respectively. Our BETS approach ranked the models 
according to their log marginal likelihoods and computed log Bayes factors of the best 
relative to the second-best model and of the best heterochronous model (Mhet) compared 
with the best isochronous model (Miso).

(i) Simulations with High Evolutionary Rate and Wide Sampling Window

Both NS and GSS correctly classified data sets as being heterochronous or isochronous in 
10 out of 10 simulations, including in the presence of a high degree of among-lineage rate 
variation (i.e., σ=1.0; figs. 2 and 3 for heterochronous data and supplementary figs. S1 and 
S2, Supplementary Material online, for isochronous data). Although both log marginal 
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likelihood estimators detected temporal signal, NS supported the relaxed clock over the strict 
clock for three heterochronous data sets simulated without among-lineage rate variation (σ
=0.0) and for six data sets simulated with low among-lineage rate variation (σ=0.1). In the 
simulations of isochronous data, NS often favoured the relaxed clock over the strict clock 
when there was low among-lineage rate variation (σ=0.0 and σ=0.1), albeit mostly with log 
Bayes factors below 5 (supplementary fig. S2, Supplementary Material online). In contrast, 
GSS always selected the strict clock under these conditions (supplementary fig. S1, 
Supplementary Material online).

For the heterochronous data sets, NS and GSS always displayed very strong support for 
Mhet over Miso, with log Bayes factors of at least 90. For the isochronous data sets, the log 
Bayes factors for Miso relative to Mhet were overall much lower, but still decisive, ranging from 
30 to 50. Furthermore, log Bayes factors tended to decline with an increasing degree of 
among-lineage rate variation in the data. Another important observation is that in the 
heterochronous data, the relaxed clock was consistently selected over the strict clock when 
assuming that the data were isochronous, or when the sampling times had been permuted 
(fig. S3, Supplementary Material online). Moreover, the strict clock with permuted sampling 
times yielded the lowest log marginal likelihoods for heterochronous data. Both of these 
patterns are likely to be due to an apparently higher degree of among-lineage rate variation 
when sampling times are misspecified.

(ii) Simulations with Low Evolutionary Rate and Wide Sampling Window

Our simulations with a low evolutionary rate of 10-5 subs/site/unit time produced data sets 
that each had on average 10 variable sites (with several replicates only having as few as 4 
variable sites), which provides very little information to estimate evolutionary parameters and 
low power to differentiate between models. Marginal likelihood estimator variance adds to 
the difficulty in distinguishing between competing models in such conditions. For the 
heterochronous data sets, GSS selected the heterochronous model with correct dates in at 
least 7 out of 10 simulation replicates (fig. 2). Across the simulations with different clock 
models (40 in total), only in five heterochronous data sets did we find models with permuted 
sampling times to have the highest log marginal likelihoods. For NS, in 12 out of 40 
simulations, either isochronous models or those with random sampling times were 
incorrectly selected when heterochronous data sets were analysed (fig. 3). 

Log marginal likelihoods calculated using GSS tended to support models with sampling 
times (either permuted or those from the birth-death) for the isochronous data, whereas NS 
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appeared to provide equal support for all models (supplementary figs. S1 and S2, 
Supplementary Material online). However, a critical feature of the results from the data sets 
with a low evolutionary rate is that the log marginal likelihoods for all models were more 
similar to one another than those for the data sets with high evolutionary rate 
(supplementary fig. S4, Supplementary Material online; note that the log marginal likelihood 
scale in fig. S4 is smaller than that in fig. S3). As a case in point, for the isochronous data 
with σ=0.1 there were log Bayes factors of about 0.1 for the best model with birth-death 
sampling times relative to those with permuted sampling times. This result points to 
difficulties distinguishing between models due to estimator variance in the case of few 
unique site patterns. Additionally, this shows that comparing models with permuted sampling 
times might be useful for determining whether the data are informative about a particular set 
of sampling times.

(iii) Simulations with High Evolutionary Rate and Narrow Sampling Window

We conducted a set of simulations similar to those described in scenario (i) but where 
sequence sampling spanned only the last 10% of the age of the tree (0.5 units of time, 
compared with 5 units of time for the simulations with a wide sampling window; fig. 1B). 
These conditions reflect those of organisms with deep evolutionary histories and for which 
samples are available for only a small (recent) portion of this time. Since in these trees the 
samples were collected over a narrower time window, we used a higher sampling probability 
to obtain about 100 samples, as in our other simulations. For these analyses we only 
considered heterochronous data because the isochronous case is identical to the one in 
scenario (i).

Both GSS and NS showed excellent performance in detecting temporal signal in this 
scenario, with GSS always selecting models with correct sampling times (fig. 2 and fig. 3). 
The exceptions to this pattern occurred for one data set with σ=0.5 and for two data sets with 
σ=1.0 for NS (fig. 3). Differentiating between the strict clock and relaxed clock appeared 
somewhat more difficult, particularly for NS, where the relaxed clock with correct sampling 
times yielded log marginal likelihoods very similar to those for the strict clock for data with 
low among-lineage rate variation (σ of 0.0 or 0.1). Although NS and GSS performed well in 
these simulations, the log Bayes factors for Mhet relative to Miso were much lower than those 
for data with a high evolutionary rate and a wide sampling window in (i). One obvious 
example is in the data with σ=0.0, where the mean log Bayes factors for Mhet over Miso using 
GSS was 203.15 with a wide sampling window, but decreased to 35.77 when sampling 
spanned a narrow time window (supplementary fig. S5, Supplementary Material online).
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(iv) Simulations with Low Evolutionary Rate and Narrow Sampling Window

We considered data sets with a narrow sampling window, as in scenario (iii), and with a low 
evolutionary rate of 10-5 subs/site/unit time, as in scenario (ii). We generated only 
heterochronous trees under these conditions, because the isochronous case would be 
identical to (ii).

Estimates of log marginal likelihoods with GSS and NS were very similar among models, 
with mean log Bayes factors among data sets of less than 1 for the two models with highest 
log marginal likelihoods for GSS (supplementary fig. S6, Supplementary Material online). In 
the data sets with σ=0.0, GSS and NS always preferred a heterochronous model. However, 
in a few cases (three for GSS and one for NS) the model with permuted sampling times was 
selected, indicating that temporal signal was not detected (figs. 2 and 3). As with the data 
sets with low evolutionary rate and constant sampling (ii), the relaxed clock was occasionally 
preferred over the strict clock, even when the data sets had no rate variation among 
lineages.

Accuracy of evolutionary rate estimates 

We compared the accuracy and precision in rate estimates for our heterochronous 
simulations with conditions (i) through (iv) using the correct sampling times and the strict and 
uncorrelated relaxed lognormal clock models. In data sets simulated under a high 
evolutionary rate and wide sampling window, i.e. condition (i), analyses of all simulation 
replicates with σ=0.0 and σ=0.1 had 95% highest posterior density (HPD) intervals that 
included the true value of the clock rate used to generate the data, 5×10-3 subs/site/unit time 
(fig. 4). When σ=0.5, the accuracy was lower, with four data sets analysed under the strict 
clock and three under the relaxed clock with 95% HPD intervals that included the true value. 
With σ=1.0, only one replicate using the strict clock included this true value in its HPD 
interval. Importantly, however, under these simulation conditions the HPD intervals of all 
estimates were within the 95-percentile width of a lognormal distribution with mean 5×10-3 
and σ=0.1 or 0.5 (fig. 4), such that they overlap the evolutionary rate distribution used to 
generate the data.

Most evolutionary rate estimates from the simulations with low evolutionary rate, condition 
(ii), had 95% HPD intervals that included the true mean value used to generate the data, 10-5 
subs/site/unit time, at the expense of very wide 95% HPD intervals, compared with those in 
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condition (i). Our analyses of data sets with a high evolutionary rate and narrow sampling 
window, condition (iii), had HPD intervals that were wider than those for condition (i), but 
narrower than those of condition (ii). All replicates with σ=0.0 or 0.1 had estimates that 
included the true mean value used to generate the data. In contrast, three data sets with σ
=0.5 analysed under a strict clock yielded HPD intervals that did not include the true value. 
For data generated under σ=1.0, seven analyses under the strict clock and three under the 
relaxed clock also failed to recover the true value, although they always overlapped with the 
95-percentile width of a lognormal distribution with mean 5×10-3 and σ=0.5. Analyses of the 
data with low evolutionary rate and narrow sampling window produced estimates that always 
included the true value of 10-3 subs/site/unit time in every case, but with very high 
uncertainty (fig. 4). 

Comparison with Root-to-tip Regression

Using a subset of the heterochronous data sets, we conducted root-to-tip regression using 
phylogenetic trees inferred using maximum likelihood as implemented in PhyML 3.1 
(Guindon et al. 2010) with the same substitution model as in our BEAST analyses, and with 
the placement of the root chosen to maximize R2 in TempEst (Rambaut et al. 2016). We 
selected data sets generated with a high evolutionary rate and with both constant and 
narrow sampling windows. Because GSS and NS correctly detected temporal signal under 
these conditions, these regressions demonstrate the extent to which this informal regression 
assessment matches the BETS approach. We did not attempt to provide a thorough 
benchmarking of the two methods here.

All regressions had R2 values that matched our expectation from the degree of among-
lineage rate variation, that is, higher values of σ corresponded to lower values of R2 (fig. 5). 
The data with a wide sampling window yielded regression slopes ranging from 7.3×10-3 to 
5.4×10-3 subs/site/unit time, which is similar to the evolutionary rate values used to generate 
the data. Although the root-to-tip regression is sometimes used to assess temporal signal, it 
has no cut-off values to make this decision. This becomes critical when considering the data 
with a narrow sampling window, for which the R2 was between 0.13 and 0.02. For example, 
the regression for a data set with σ=1 and narrow sampling window had an R2 of 0.02, which 
is sometimes considered sufficiently low as to preclude molecular clock analyses (Rieux and 
Balloux 2016). However, BETS supported temporal signal under a relaxed clock, with a log 
Bayes factor of 5.48 for this particular data set, which matches the simulation conditions. 
More importantly, even with such high rate variation, the evolutionary rate estimated using a 
relaxed clock and the correct sampling times included the true value used to generate the 
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data (5×10-3 subs/site/unit time), with a 95% HPD interval of 2.15×10-3 to 1.90×10-2 

subs/site/unit time, while the regression slope was 2.22×10-2 subs/site/unit time. A key 
implication of these comparisons is that BETS provides a formal assessment of temporal 
signal, unlike statistics computed from the regression. Moreover, the root-to-tip regression 
appears to be uninformative when the data have been sampled over a narrow time window 
and there is some rate variation among lineages.

Simulations with phylo-temporal clustering

Phylo-temporal clustering sometimes occurs in empirical data due to limited opportunities for 
sample collection or varying degrees of population structure. We investigated the effects of 
phylo-temporal clustering by performing an additional set of simulations in which we 
specified five clades of 20 tips. To generate heterochronous data within each clade we set 
five possible sampling times that corresponded to the quantiles of sampling times from a 
birth-death process with the same exponential growth rate as in our birth-death simulations. 
We simulated trees conditioned on these clades and their sampling times. To generate the 
sequence data, we setσ=0.0 and σ=1.0. We estimated log marginal likelihoods using only 
GSS, owing to its accuracy.

Using GSS, BETS correctly identified temporal signal and the correct clock model in all 
simulations of heterochronous data. However, evolutionary rates were often overestimated 
for these data (fig. 6), a pattern that has been demonstrated previously (Duchêne et al. 
2015; Murray et al. 2015). When the data were isochronous, BETS has lower performance, 
identifying the correct model in eight cases when σ=0.0 and seven cases when σ=1.0 
(supplementary fig. S7, Supplementary Material online). 

Sensitivity and specificity
We investigated the extent to which detecting temporal signal could improve by using 
different cut-offs for the log Bayes factors. From a practical point of view, the main concern 
is that a data set with no temporal signal, for example when simulated here under 
isochronous trees, would be classified as heterochronous (i.e., false positives), resulting in 
spurious estimates of evolutionary rates and times. This problem was apparent in our 
simulations with a low evolutionary rate, where a number of isochronous data sets were 
classified as heterochronous. To determine such a possible cut-off value, we fit receiver 
operating characteristic (ROC) curves and calculated sensitivity and specificity (i.e., true 
positive and true negative rates, respectively). 
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Our simulations with high evolutionary rates were correctly classified, with sensitivity and 
specificity of 1.0 (fig. 7). Those with low evolutionary rates had a sensitivity and specificity of 
0.68 and 0.85 with a wide sampling window and of 0.68 and 0.45 with a narrow sampling 
window. Importantly, these values correspond to a log Bayes factor cut-off optimized in the 
ROC curve fitting and is determined to be 1.04 for the simulations with a wide sampling 
window and 0.16 for those with a narrow sampling window. A more conservative approach 
to guard against false positives is to consider a higher cut-off value. A log Bayes factor of 3 
is generally considered to be ‘strong’ evidence in favour of a model (Kass and Raftery 1995). 
In our simulations with low evolutionary rate this cut-off results in a specificity of 0.95, 
meaning that 95% of isochronous data sets were classified as such, at the expense of a low 
sensitivity of 0.43 for the data simulated with a wide sampling window, and of 0.0 for those 
with a narrow sampling window (note that sensitivity for the simulations with a low 
evolutionary rate and narrow sampling window using Bayes factor cut-off of 0.0 is already 
low, at 0.68). Importantly, using a log Bayes factor cut-off of 3 would still result in a 
specificity and sensitivity of 1.0 in our simulations with a high evolutionary rate.

A key point about our data sets simulated with a low evolutionary rate is that they contain 
(very) low numbers of variable sites and unique site patterns (varying between 4 and 13), 
which can make model selection challenging. In order to increase accuracy, one could invest 
significant computational efforts to reduce estimator variance when repeated analyses prove 
inconclusive. The log Bayes factors for these data are much lower than for those generated 
using a higher evolutionary rate. We conducted another set of simulations with the same low 
evolutionary rate, but with much longer sequence alignments (10,000 nucleotides) to 
increase the number of variable sites and unique site patterns. For these longer alignments, 
the ROC curve indicated better performance of BETS, with sensitivity and specificity both 
equal to 0.83 with an optimal log Bayes factor of 1.39 (fig 8).

Analyses of Empirical Data Sets

We analysed five empirical data sets with similar configurations of sampling times as in our 
simulation study (Table 1). Two data sets consisted of rapidly evolving pathogens: A/H1N1 
influenza virus (Hedge et al. 2013) and Bordetella pertussis (Bart et al. 2014). We also 
analysed a data set with highly divergent sequences of coronaviruses (Wertheim et al. 
2013), and two data sets with ancient DNA: Hepatitis B virus (Patterson Ross et al. 2018) 
and mitochondrial genomes of dog species (Thalmann et al. 2013). Due to the demonstrated 
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higher accuracy of GSS over NS (Fourment et al. 2019), we applied the BETS approach 
using the former method only.

The A/H1N1 influenza virus data demonstrated clear temporal signal, with the strict clock 
and relaxed clock with the correct sampling times having the highest log marginal 
likelihoods, and a log Bayes factor of Mhet with respect to Miso of 150 (fig. 9). The strict clock 
had higher support than the relaxed clock for the correct sampling times (log Bayes factor 
3.41). Broadly, this result is consistent with previous evidence of strong temporal signal and 
clocklike behaviour in this data set (Hedge et al. 2013). Using the strict clock with correct 
sampling times we estimated an evolutionary rate of 3.37×10-3 subs/site/year (95% HPD: 
2.98×10-3 to 3.78×10-3).

We detected temporal signal in the Bordetella pertussis data set (fig. 9). The relaxed clock 
with the correct sampling times generated the highest log marginal likelihood, with a log 
Bayes factor relative to the strict clock of 28.86. The log Bayes factor for Mhet relative to Miso 

was 47.40. These results echo previous assessments of these data using a date-
randomization test (Duchene et al. 2016). We estimated a mean evolutionary rate using the 
best model of 1.65×10-7 subs/site/year (95% HPD: 1.36×10-7 to 2.00×10-7).

Our analyses did not detect temporal signal in the coronavirus data, for which the strict clock 
and relaxed clock with no sampling times had the highest log marginal likelihoods. The log 
Bayes factor of Mhet relative to Miso was -16.82, indicating very strong support for the 
isochronous model. The relaxed clock was supported over the strict clock, with a log Bayes 
factor of 19.25 (fig. 10). The lack of temporal signal precludes any interpretation of our 
estimates of evolutionary rates and timescales. Previous analyses of these data suggested 
an ancient origin for this group of viruses using a substitution model that accounts for the 
effect of purifying selection over time (Wertheim et al. 2013), a model that we did not use 
here.

The Hepatitis B virus data set included several human genotypes with complete genomes, 
where 135 were modern sequences collected from 1963 to 2013 and two were ancient 
samples from human mummies from the 16th century. Previous studies have not found any 
temporal signal in these data using different approaches, despite the inclusion of ancient 
sequences. Our estimates of log marginal likelihoods were consistent with a lack of temporal 
signal, with a log Bayes factor of -101.51 for Mhet relative to Miso.
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The dog mitochondrial genome data contained samples from up to 36,000 years before the 
present. BETS detected temporal signal in these data, with a log Bayes factor of 38.77 for 
Mhet relative to Miso; this result is consistent with that of a date-randomization test in a 
previous study (Tong et al. 2018). The estimated evolutionary rate for these data using the 
best model had a mean of 1.08×10-7 subs/site/year (95% HPD: 7.49×10-8 to 1.52×10-7). 

Discussion

We have proposed BETS, a method that explicitly assesses the statistical support for 
including sequence sampling times in a Bayesian framework. It is a test of the presence of 
the temporal signal in a data set, which is an important prerequisite for obtaining reliable 
inferences in phylodynamic analyses. BETS considers the model ensemble, such that the 
method can detect temporal signal using models that account for evolutionary rate variation 
among lineages. The results of our analyses demonstrate that our method is effective in a 
wide range of conditions, including when the evolutionary rate is low or when the sampling 
window represents a small portion of the timespan of the tree.

BETS does not require date permutations, which sets it apart from the widely used date-
randomization test for temporal structure. Date-randomization tests address the question of 
whether a particular association between sequences and sampling times produces 
estimates different from those obtained from data sets with permuted sampling times 
(Duchêne et al. 2015; Murray et al. 2015). However, such an approach is not a formal test of 
temporal signal in the data because the permutations do not necessarily constitute an 
appropriate null model. Because our method does not require permutations, it has the 
benefit of being robust to using a limited number of sampling times.

Accurate calculations of log marginal likelihoods are essential for BETS. In our simulation 
study, we found that GSS and NS correctly assessed the presence and absence of temporal 
signal in the data under most conditions. The correct clock model was also identified, 
although in a few instances NS preferred an overparameterized model. Conceivably, using 
different log marginal likelihood estimators might affect the actual model selected. Murray et 
al. (2015) also employed a Bayesian model-testing approach using the AICM to assess 
temporal signal. In their study, the AICM performed well in simulations, but failed to detect 
temporal signal in empirical data. We attribute this finding to the low accuracy of AICM 
compared with path sampling methods (Baele et al. 2012, 2013), and suggest careful 
consideration of the log marginal likelihood estimator for tests of temporal signal. In a recent 
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review, Fourment et al. (2020) found GSS to be a highly accurate albeit computationally 
demanding log marginal likelihood estimator. 

A key benefit of BETS is that the complete model is considered. It is straightforward to use 
any model for which the log marginal likelihood can be calculated, including other models of 
among-lineage rate variation, unlike in simpler data exploration methods such as root-to-tip 
regression. In the particular case of local clock models (Drummond and Suchard 2010; 
Worobey et al. 2014; Bletsa et al. 2019), the root-to-tip regression is uninformative because 
it assumes that the slope represents a single mean evolutionary rate. 

We find that highly precise and accurate evolutionary rate estimates are associated with 
strong Bayes factor support for heterochronous models (fig. 4 and supplementary fig. 3, 
Supplementary Material Online). Bayes factors provide a coherent approach to identifying 
the presence of temporal signal, instead of providing a potentially subjective gradient of 
strength of such signal. In contrast, root-to-tip regression offers an important visual aid for 
uncovering problems with data quality and to inspect clocklike behaviour, but the absence of 
appropriate statistics means that there is no clear objective way of determining whether the 
data contain temporal information. Consider the regressions in figure 5 for data with a high 
evolutionary rate and narrow sampling window. Even when among-lineage rate variation is 
low (σ=0.1), the data points form a cloud, with a low R2 of 0.09. However, the apparent 
‘noise’ around the regression line is probably the result of stochasticity in sequence evolution 
and of the narrow sampling window relative to the age of the root of the tree. In fact, for this 
particular data set the model with the highest log marginal likelihood is the strict clock with 
correct sampling times. 

In all of our analyses, we ensured that the priors for different models and configurations of 
sampling times were identical because, as with all Bayesian analyses, model comparison 
using log marginal likelihoods can depend on the choice of prior (Oaks et al. 2019). For 
example, the tree prior can affect inferences of temporal signal, as it is part of the full model 
specification. Here we used an exponential-growth coalescent tree prior, which closely 
matches the demographic dynamics of the birth-death process under which the data were 
simulated. The effect of using an inappropriate tree prior on tests of temporal signal requires 
further investigation, but previous studies have suggested that there is only a small impact 
on estimates of rates and times if the sequence data are informative (Ritchie et al. 2017; 
Möller et al. 2018). 
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An interesting finding is that statistical support for isochronous sampling times in truly 
isochronous data is lower than that for the correct sampling times in truly heterochronous 
data. This can potentially lead to an increased risk of incorrectly concluding the presence of 
temporal signal. In particular, in isochronous data simulated with a low evolutionary rate, and 
with very few variable sites, the best models were sometimes those that included sampling 
times, albeit with very low log Bayes factors (e.g., supplementary fig. S1 and fig. S2, 
Supplementary Material online). This probably occurs because stochastic error associated 
with a small amount of evolution leads to low power for model selection. While increasing 
the computational settings for (log) marginal likelihood estimation can alleviate these issues, 
this may not be feasible when analysing large data sets. Further, our sensitivity and 
specificity analyses demonstrate that a practical way to address this problem is to use a 
more conservative log Bayes factor cut-off of 3 as evidence of temporal structure, as 
opposed to simply choosing the model with the highest marginal likelihood. This cut-off 
matches ‘strong’ evidence in favour of a model as suggested by Kass and Raftery (1995). 

Permuting sampling times led to poor model fit, as expected. This procedure has substantial 
computing requirements, depending on the number of permutations that are performed, and 
we find that such date permutations are of limited value for model testing when the data are 
highly informative (e.g., figs. 2 and 3). However, in data sets with very low information 
content, such as those that were produced by simulations with a low evolutionary rate here, 
conducting a small number of date permutations might offer a conservative approach to 
determining whether model fit and parameter estimates are driven by a particular set of 
sampling times, as one would expect in the presence of temporal signal.

The nature of the BETS approach means that every parameter in the model has a prior 
probability, including the evolutionary rate. Because evolutionary rates and times are 
nonidentifiable, it is conceivable that an informative prior on the rate or on the age of an 
internal node might have a stronger effect than the sampling times on the posterior, for 
example if the samples span a very short window of time. Such analyses with informative 
evolutionary rate priors effectively include several simultaneous sources of calibration 
information (i.e., sampling times, internal nodes, and an informative rate prior). Using 
sampling times in addition to other sources of calibration information might still be warranted 
if such external sources of information are available.

Most of our heterochronous simulations yielded evolutionary rate estimates that contained 
the true value used to generate the data, indicative of the accuracy of our estimations. 
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However, it is important to note that all tests of temporal signal, including BETS, aim to 
determine whether there is an association between genetic divergence and time, which is 
not equivalent to asking whether evolutionary rate estimates are accurate, a question that 
depends on information content of the data and the extent to which the model describes the 
process that generated the data. Phylo-temporal clustering is a particular situation where 
temporal information in the data is very limited, leading to an upward bias in the evolutionary 
rate (Murray et al. 2015), even in the presence of temporal signal. As such, investigating the 
degree of phylo-temporal clustering is an important step prior to interpreting any inferences 
made using the molecular clock (Duchêne et al. 2016; Tong et al. 2018).

Analyses with multiple calibrations can also allow uncertainty in sequence sampling times, 
especially in data sets that include ancient DNA, where sampling times can be treated as 
parameters in the model (Shapiro et al. 2011). BETS provides a coherent approach for 
assessing temporal structure in these circumstances, unlike date-randomization tests that 
typically use point values for sampling times. In fact, BETS can be used as a means to 
validate whether a sample is modern or ancient. 

In general, the increasing adoption of Bayesian model testing in phylogenetics has great 
potential for improving our confidence in estimates of evolutionary rates and timescales. The 
test that we have proposed here, BETS, provides a coherent and intuitive framework to test 
for temporal information in the data.

Materials and Methods

Simulations

We simulated phylogenetic trees under a stochastic birth-death process using MASTER v6.1 
(Vaughan and Drummond 2013), by specifying birth rate λ=1.5, death rate μ=0.5, and 
sampling rate ψ=0.5. This corresponds to an exponentially growing infectious outbreak with 
reproductive number R0=1.5 and a wide sampling window. We set the simulation time to 5 
units of time, which corresponds to the time of origin of the process. For isochronous trees, 
we used similar settings, but instead of using the sampling rate, we sampled each tip with 
probabilityρ=0.5 when the process was stopped after 5 units of time (i.e. μ=1.0 and ψ=0.0). 
Some of our analyses consisted of artificially specifying sampling times for isochronous 
trees, which we set to those that we would have obtained from a birth-death process with μ
=0.5 and ψ=0.5. 
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In a second set of simulations of heterochronous trees, we generated trees with a narrow 
sampling window. We specified two intervals for μ andψ. The first interval spanned 4.5 units 
of time with μ=1.0 and ψ=0.0, and the second interval 0.5 units of time with μ=0.1 and ψ
=0.9. As a result, the process still had a constant become-uninfectious rate (μ+ψ), but 
samples were only collected in the second interval. The high sampling rate in the second 
interval resulted in trees with similar numbers of tips to those with a wide sampling window, 
but where their ages only spanned 0.5 units of time. 

We only considered the simulated trees that contained between 90 and 110 tips. The trees 
generated in MASTER are chronograms (with branch lengths in units of time), so we 
simulated evolutionary rates to generate phylograms (with branch lengths in units of 
subs/site). To do this we specified the uncorrelated lognormal relaxed clock with a mean rate 
of 5×10-3 or 10-5 subs/site/unit time and a standard deviation σ of 0.0 (corresponding to a 
strict clock), 0.1, 0.5, or 1.0. We simulated sequence evolution along these phylograms 
under the HKY nucleotide substitution model (Hasegawa et al. 1985). We added among-site 
rate variation using a discretized gamma distribution (Yang 1994, 1996) using Phangorn 
v2.5 (Schliep 2011) to generate sequence alignments of 4,000 and 10,000 nucleotides. We 
set the transition-to-transversion ratio of the HKY model to 10 and the shape of the gamma 
distribution to 1, which is similar to estimates of these parameters in influenza viruses 
(Duchene et al. 2014; Hedge and Wilson 2014). For each simulation scenario we generated 
10 sequence alignments.

To simulate data under phylo-temporal clustering we specified five clades with 20 tips each 
to generate trees of 100 tips. For the heterochronous data, we specified one of five possible 
sampling times for each clade, which corresponded to quantiles from a birth-death process 
as used in our simulations above. For the isochronous data we constrained the tips to have 
identical sampling times. We specified these clades and sampling times in BEAST as 
monophyletic groups and sampled trees from the prior under a coalescent process with 
exponential growth parameterized with λ=1.5 and δ=1, such that it has the same growth rate 
as the birth-death trees. We conducted these simulations under the coalescent, rather than 
the birth-death, because this process is typically conditioned on the number and age of 
samples, whereas the birth-death explicitly models sampling over time. We simulated 
sequence data sets as above, but in this case we only considered an evolutionary rate of 
5×10-3 subs/site/year and aσ of 0.0 or 1.0.
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Estimation of Log Marginal Likelihoods Using Nested Sampling

We analysed the data in BEAST 2.5 using the matching substitution model, the exponential-
growth coalescent tree prior, the strict clock or relaxed clock, and different configurations of 
sampling times. We chose the exponential-growth coalescent tree prior, instead of the birth-
death tree prior, because it is conditioned on the samples instead of assuming a sampling 
process; this ensures that the marginal likelihoods for isochronous and heterochronous trees 
are comparable. 

We specified proper priors on all parameters, which is essential for accurate estimation of 
log marginal likelihoods (Baele et al., 2013). In our heterochronous analyses the prior on the 
evolutionary rate had a uniform distribution bounded between 0 and 1. We made this 
arbitrary choice to set a somewhat uninformative prior and because the default prior in 
BEAST 2.5 is a uniform distribution between 0 and infinity, which is improper. Owing to the 
non-identifiability of evolutionary rates and times, neither can be inferred in the absence of 
calibrating information, so in our isochronous analyses we fixed the value of the evolutionary 
rate to 1. The initial NS chain length was chosen so as to draw 20,000 samples, with 20,000 
steps, 32 particles, and a subchain length of 5,000 (note that NS is not equivalent to 
standard MCMC, nor is the definition of an iteration/step). The chain length and its 
accompanying sampling frequency were adjusted to obtain effective sample sizes for key 
parameters of at least 200 (computed in the NS output in BEAST 2.5). Examples of 
MASTER files and BEAST 2.5 input files for NS are available online (supplementary data, 
Supplementary Material online).

Estimation of Log Marginal Likelihoods Using Generalized Stepping-Stone Sampling

We used BEAST 1.10 with the same model specifications and priors as in BEAST2, except 
for the prior on the evolutionary rate, for which we used the approximate continuous-time 
Markov chain (CTMC) reference prior (Ferreira and Suchard 2008). Because our simulation 
analyses of GSS and NS differ in this prior, the log marginal likelihood estimates are not 
directly comparable, so for each simulation we report log Bayes factors of competing models 
instead of the individual log marginal likelihoods. The GSS implementation in BEAST 1.10 
has two different working priors for the tree generative process: a matching tree prior and a 
product of exponentials. The latter approach is the most generally applicable and is the one 
that we used here (Baele et al. 2016). 
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We used an initial MCMC chain length of 5×107 steps sampling every 5000 steps. After 
discarding 10% of the samples obtained, the remaining samples were used to construct the 
working distributions for the GSS analysis through kernel density estimation. The log 
marginal likelihood estimation comprised 100 path steps distributed according to quantiles 
from a β distribution with α=0.3, with each of the 101 resulting power posterior inferences 
running for 5×105 iterations. We assessed sufficient sampling for the initial MCMC analysis 
by verifying that the effective sample sizes for key parameters were at least 200 in Coda 
v0.19 (Plummer et al. 2006). If this condition was not met, we doubled the length of the 
MCMC and reduced sampling frequency accordingly. Examples of MASTER files and 
BEAST 1.10 input files for GSS are available online (supplementary data, Supplementary 
Material online).

Receiver Operating Characteristic (ROC) Curves
ROC curves are generated by plotting the true positive rate (TPR, i.e. the sensitivity) against 
the false positive rate (FPR, i.e. 1 – specificity) at a range of selected thresholds and allows 
assessment of the performance of a binary classifier system. We fit ROC curves to the 
different simulation scenarios using the R package ROCR (Sing et al. 2005). We classified 
data as ‘positives’ and ‘negatives’ if they were generated under a heterochronous or 
isochronous (i.e., no temporal signal) model, respectively. In order to determine the optimal 
cut-off value, we determined the point on the ROC curve closest to a TPR of 1 and an FPR 
of 0 (i.e. we assigned equal importance to sensitivity and specificity). We did not explore 
assigning different costs to false positives and false negatives.

Analyses of Empirical Data Sets

We downloaded sequence alignments from their original publications (Table 1): complete 
genomes of the 2009 pandemic lineage of A/H1N1 influenza virus (Hedge et al. 2013), 
whole genome sequences of B. pertussis (Bart et al. 2014; Duchene et al. 2016), RdRP 
sequences of coronaviruses (Wertheim et al. 2013), complete genomes of Hepatitis B virus 
(Patterson Ross et al. 2018), and dog mitochondrial genomes (Thalmann et al. 2013). The 
data and BEAST input files are available in the Supplementary Material online.

Briefly, we used similar settings as in our simulations to estimate log marginal likelihoods 
using GSS. For sequence sampling times we considered the correct sampling times, no 
sampling times (i.e., isochronous), and permuted sampling times. We also specified tree 
priors as follows: an exponential-growth coalescent for the A/H1N2 influenza virus, 
Bordetella pertussis, coronaviruses, and Hepatitis B virus data sets, and a constant-size 
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coalescent for the dog mitochondrial genomes as used by Tong et al. (2018). We again 
chose the HKY+Γ substitution model, except in the analysis of Hepatitis B virus data, for 
which we used the GTR+Γ model (Tavaré 1986), and in the analysis of the dog data set for 
which we used the SRD06 substitution model (Shapiro et al. 2006) for coding regions and 
the GTR+Γ for noncoding regions.

Supplementary Material

Supplementary data are available online.
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Figure Legends

FIG. 1. Four examples of phylogenetic trees used in simulations. Red dashed vertical lines 
indicate the times of the tips and therefore represent the sampling process over time. Trees 
A–C were simulated under a birth-death process with time of origin of 5, such that the sum of 
the tree height and the length of the stem branch leading to the root is always 5. Tree D was 
generated under a coalescent process with exponential growth. The coalescent and birth-
death models have an exponential growth rate, r, defined as the difference between the birth 
rate,λ, and the become-uninfectious rate,δ, such that r = λ - δ. We set λ=1.5, and δ=1. In the 
birth-death model δ=μ+ψ, where μ is the death rate and ψ is the sampling rate upon death. 
Thus, the population growth rate is constant and the same across all trees. Tree A 
represents a constant sampling process and a wide sampling window (ψ=0.5 time units 
throughout the whole process), whereas in tree B sampling starts after 4.5 time units. Before 
this time the sampling rate, ψ0, is zero. After 4.5 time units the sampling rate ψ1 is 0.9 (and 
thus μ1= 0.1), resulting in a narrow sampling window. Tree C has samples drawn at a single 
point in time with a sampling probability at present, ρ, of 0.5 (and thus ψ=0). Tree D 
represents a situation where tips with identical sampling times form monophyletic groups, a 
pattern known as phylo-temporal clustering. To generate these conditions, we used a 
coalescent model conditioned on the number of tips and their sampling times. These 
sampling times corresponded to 5 quantiles of a birth-death process with the same r.

FIG. 2. Models selected for heterochronous data using generalized stepping-stone sampling 
under two evolutionary rates, shown in each panel and noted in the main text as conditions 
(i) and (ii), and four degrees of among-lineage rate variation as determined by the standard 
deviation of a lognormal distribution,σ (along the x-axis). Each set of bars corresponds to a 
model, with bar heights (along the y-axis) representing the number of times each model was 
selected out of ten simulation replicates. The bars are coloured according to the settings in 
the analysis, based on combinations of two molecular clock models, strict clock (SC) and the 
uncorrelated relaxed clock with an underlying lognormal distribution (UCLN), and three 
settings for sampling times: generated under the birth-death process (BD), identical 
sampling times (Isochronous; ISO), and permuted (Permuted; PER).

FIG. 3. Models selected for heterochronous data using nested sampling under different 
simulation conditions; four combinations of evolutionary rate and width of the sampling 
window shown in each panel and noted in the main text as conditions (i) through (iv), and 
four degrees of among-lineage rate variation as determined by the standard deviation of a 
lognormal distribution,σ (along the x-axis). Each set of bars corresponds to a model and their 
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height (along the y-axis) represents the number of times each model was selected out of ten 
simulation replicates. The bars are coloured depending on the analyses settings with two 
molecular clock models, strict clock (SC) and the uncorrelated relaxed clock with an 
underlying lognormal distribution (UCLN), and three settings for sampling times: generated 
under the birth-death process (BD), identical sampling times (Isochronous; ISO), and 
permuted (Permuted; PER).

FIG. 4. Evolutionary rate estimates for heterochronous data with correct sampling times 
using a strict clock (in dark blue) and an uncorrelated relaxed clock with an underlying 
lognormal distribution (in light blue). The panels correspond to the simulation conditions (i) 
through (iv), described in the main text. The x-axis denotes four degrees of among-lineage 
rate variation used to generate the data, as determined by the standard deviation of a 
lognormal distribution,σ. The y-axis corresponds to the evolutionary rate estimate. Solid grey 
lines correspond to the mean evolutionary rate value used to generate the data. Dashed and 
dotted lines denote the 95-percentile width of a lognormal distribution with σ =0.1, and 0.5, 
respectively. 

FIG. 5. Root-to-tip regressions for a subset of data sets simulated with varying degrees of 
among-lineage rate variation (governed by the standard deviation σ of a lognormal 
distribution), using a high evolutionary rate and either a wide or narrow sampling window. 
The y-axis is the root-to-tip distance and the x-axis is the time from the youngest tip, where 0 
is the present. Each point corresponds to a tip in the tree and the solid line is the best-fit 
linear regression using least-squares. The coefficient of determination, R2, is shown in each 
case. For comparison, the log Bayes factors of the best heterochronous model relative to the 
best isochronous model, BF(Mhet -Miso), are also shown.

FIG. 6. Results for heterochronous simulations with phylo-temporal clustering. The right-hand 
panel denotes models selected using generalized stepping-stone sampling under two 
degrees of among-lineage rate variation as determined by the standard deviation of a 
lognormal distribution,σ (along the x-axis). Each set of bars corresponds to a model and their 
height (along the y-axis) represents the number of times each model was selected out of ten 
simulation replicates. The bars are coloured depending on the analyses settings with two 
molecular clock models, strict clock (SC) and the uncorrelated relaxed clock with an 
underlying lognormal distribution (UCLN), and three settings for sampling times: generated 
under the birth-death process (BD), identical sampling times (Isochronous; ISO), and 
permuted (Permuted; PER). The left-hand panel shows evolutionary rate estimates for with 
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correct sampling times using a strict clock and an uncorrelated relaxed clock with an 
underlying lognormal distribution.

FIG. 7. Receiver operating characteristic (ROC) curves for data simulated with high 
evolutionary rate and wide sampling window (i), low evolutionary rate and wide sampling 
window (ii), high evolutionary rate and narrow sampling window (iii), and low evolutionary 
rate and narrow sampling window (iv). Sensitivity and specificity values are shown in each 
case.

FIG. 8. Receiver operating characteristic (ROC) curves for data simulated with low 
evolutionary rate, wide sampling window, and long sequence length (10,000 nucleotides). 
Sensitivity and specificity values are shown.

FIG. 9. Log marginal likelihoods estimated using generalized stepping-stone sampling for six 
analysis settings for sequence data from rapidly evolving pathogens, A/H1N1 Human 
influenza virus and Bordetella pertussis. The y-axis is the log marginal likelihood and the x-
axis shows the analysis settings, with two clock models, strict clock (SC) and the 
uncorrelated relaxed clock with an underlying lognormal distribution (UCLN), and three 
settings for sampling times: generated under the birth-death process (BD), identical 
sampling times (Isochronous), and permuted (Permuted). Solid points and dashed lines 
correspond to the log marginal likelihood estimates. The asterisk denotes the model with the 
highest log marginal likelihood.

FIG. 10. Log marginal likelihoods estimated using generalized stepping-stone sampling for 
six analysis settings for data sets with ancient DNA or highly divergent sequences. The y-
axis is the log marginal likelihood and the x-axis shows the analysis settings, with two clock 
models, strict clock (SC) and the uncorrelated relaxed clock with an underlying lognormal 
distribution (UCLN), and three settings for sampling times: generated under the birth-death 
process (BD), identical sampling times (Isochronous), and permuted (Permuted). Solid 
points and dashed lines correspond to the log marginal likelihood estimates. The asterisk 
denotes the model with the highest log marginal likelihood.

Supplementary Material

FIG. S1. Models selected for isochronous data using generalized stepping-stone sampling 
under two evolutionary rates, shown in each panel and noted in the main text as conditions 
(i) and (ii), and four degrees of among-lineage rate variation as determined by the standard 
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deviation of a lognormal distribution,σ (along the x-axis). Each set of bars corresponds to a 
model and their height (along the y-axis) represents the number of times each model was 
selected out of ten simulation replicates. The bars are colored depending on the analyses 
settings with two molecular clock models, strict clock (SC) and the uncorrelated relaxed 
clock with an underlying lognormal distribution (UCLN), and three settings for sampling 
times: generated under the birth-death process the using five quantiles (BD; i.e. correct 
sampling times with phylo-temporal clustering), identical sampling times (Isochronous; ISO), 
and permuted (Permuted; PER).

FIG. S2. Models selected for isochronous data using nested sampling under two evolutionary 
rates, shown in each panel and noted in the main text as conditions (i) and (ii), and four 
degrees of among-lineage rate variation as determined by the standard deviation of a 
lognormal distribution,σ (along the x-axis). Each set of bars corresponds to a model and their 
height (along the y-axis) represents the number of times each model was selected out of ten 
simulation replicates. The bars are colored depending on the analyses settings with two 
molecular clock models, strict clock (SC) and the uncorrelated relaxed clock with an 
underlying lognormal distribution (UCLN), and three settings for sampling times: generated 
under the birth-death process (BD), identical sampling times (Isochronous; ISO), and 
permuted (Permuted; PER).

FIG. S3. Log Bayes factors of heterochronous data simulated with a high evolutionary rate 
and a wide sampling window. Each panel shows the results for data sets simulated with a 
different degree of among-lineage rate variation, governed by the standard deviation σ of a 
lognormal distribution. The x-axis depicts six analysis settings, with two molecular clock 
models, strict clock (SC) and the uncorrelated relaxed clock with an underlying lognormal 
distribution (UCLN), and three settings for sampling times: generated under the birth-death 
process (BD), identical sampling times (Isochronous), and permuted (Permuted). The points 
have been jittered to facilitate visualization. The y-axis shows log Bayes factors relative to 
the best model. Black circles correspond to estimates using generalized stepping-stone 
sampling and grey circles correspond to estimates using nested sampling. We conducted 10 
simulation replicates, with each replicate data set analysed under the six analysis settings 
and two marginal likelihood estimators, such that stochastic error might cause differences in 
the preferred model. The number next to each cloud of points denotes the number of times 
(out of 10) that the corresponding model had the highest log marginal likelihood with 
generalized stepping-stone sampling (in black) and nested sampling (in grey).
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FIG. S4. Log Bayes factors of heterochronous data simulated with a low evolutionary rate 
and a wide sampling window. Each panel shows the results for data sets simulated with a 
different degree of among-lineage rate variation, governed by the standard deviation σ of a 
lognormal distribution. The x-axis depicts six analysis settings, with two molecular clock 
models, strict clock (SC) and the uncorrelated relaxed clock with an underlying lognormal 
distribution (UCLN), and three settings for sampling times: generated under the birth-death 
process (BD), identical sampling times (Isochronous), and permuted (Permuted). The points 
have been jittered to facilitate visualization. The y-axis shows log Bayes factors relative to 
the best model. Black circles correspond to estimates using generalized stepping-stone 
sampling and grey circles correspond to estimates using nested sampling. We conducted 10 
simulation replicates, with each replicate data set analysed under the six analysis settings 
and two marginal likelihood estimators, such that stochastic error might cause differences in 
the preferred model. The number next to each cloud of points denotes the number of times 
(out of 10) that the corresponding model had the highest log marginal likelihood with 
generalized stepping-stone sampling (in black) and nested sampling (in grey).

FIG. S5. Log Bayes factors of heterochronous data simulated with a high evolutionary rate 
and a narrow sampling window. Each panel shows the results for data sets simulated with a 
different degree of among-lineage rate variation, governed by the standard deviation σ of a 
lognormal distribution. The x-axis depicts six analysis settings, with two molecular clock 
models, strict clock (SC) and the uncorrelated relaxed clock with an underlying lognormal 
distribution (UCLN), and three settings for sampling times: generated under the birth-death 
process (BD), identical sampling times (Isochronous), and permuted (Permuted). The points 
have been jittered to facilitate visualization. The y-axis shows log Bayes factors relative to 
the best model. Black circles correspond to estimates using generalized stepping-stone 
sampling and grey circles correspond to estimates using nested sampling. We conducted 10 
simulation replicates, with each replicate data set analysed under the six analysis settings 
and two marginal likelihood estimators, such that stochastic error might cause differences in 
the preferred model. The number next to each cloud of points denotes the number of times 
(out of 10) that the corresponding model had the highest log marginal likelihood with 
generalized stepping-stone sampling (in black) and nested sampling (in grey).

FIG. S6. Log Bayes factors of heterochronous data simulated with a low evolutionary rate 
and a narrow sampling window. Each panel shows the results for data sets simulated with a 
different degree of among-lineage rate variation, governed by the standard deviation σ of a 
lognormal distribution. The x-axis depicts six analysis settings, with two molecular clock 
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models, strict clock (SC) and the uncorrelated relaxed clock with an underlying lognormal 
distribution (UCLN), and three settings for sampling times: generated under the birth-death 
process (BD), identical sampling times (Isochronous), and permuted (Permuted). The points 
have been jittered to facilitate visualization. The y-axis shows log Bayes factors relative to 
the best model. Black circles correspond to estimates using generalized stepping-stone 
sampling and grey circles correspond to estimates using nested sampling. We conducted 10 
simulation replicates, with each replicate data set analysed under the six analysis settings 
and two marginal likelihood estimators, such that stochastic error might cause differences in 
the preferred model. The number next to each cloud of points denotes the number of times 
(out of 10) that the corresponding model had the highest log marginal likelihood with 
generalized stepping-stone sampling (in black) and nested sampling (in grey).

FIG S7. Results for isochronous simulations with phylo-temporal clustering using generalized 
stepping-stone sampling under two degrees of among-lineage rate variation as determined 
by the standard deviation of a lognormal distribution,σ (along the x-axis). Each set of bars 
corresponds to a model and their height (along the y-axis) represents the number of times 
each model was selected out of ten simulation replicates. The bars are colored depending 
on the analyses settings with two molecular clock models, strict clock (SC) and the 
uncorrelated relaxed clock with an underlying lognormal distribution (UCLN), and three 
settings for sampling times: generated the birth-death process using five quantiles (BD; i.e. 
artificially producing phylo-temporal clustering), identical sampling times (Isochronous; ISO), 
and permuted (Permuted; PER). 
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Tables

Table 1. Details of empirical data sets used in this study.

Data set
Number of 

sites 
(nucleotides)

Number of 
samples

Sampling time range Reference

A/H1N1 
influenza virus

13,154 329
10 months (March to 

December 2009)
Hedge et al. 

(2013)
Bordetella 
pertussis

4.9×106 150 89 years (1920 to 2009)
Bart et al. 

(2014)

Coronaviruses 1,860 43 70 years (1941 to 2011)
Wertheim et al. 

(2013)
Hepatitis B 

virus
3,271 137 445 years (2103 to 1568)

Patterson Ross 
et al. (2018)

Dog mtDNA 14,596 50
36,000 years (to the 

present)
Thalmann et al. 

(2013)
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A.�Birth-death tree with constant sampling
�=1.5, �=0.5, �=0.5, origin=5 

B. Birth-death tree with variable sampling
�=1.5, �0=1.0, �0=0.0, �1=0.1, �1=0.9, 
origin=5, sampling time=4.5

C. Birth-death tree with a single sampling time point
�=1.5, �=1.0, �=0, �=0.5 origin=5 

D. Coalescent tree with exponential growth 
and phylo-temporal clustering (5 clades with
identical sampling times) 
�=1.5, �=1.0
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